Lecture 9: Improving Training of Neural Networks Part 1 Code
Contents
Lecture 9: Improving Training of Neural Networks Part 1 Code #
#@title
from ipywidgets import widgets
out1 = widgets.Output()
with out1:
from IPython.display import YouTubeVideo
video = YouTubeVideo(id=f"9Z5C-bOMafs", width=854, height=480, fs=1, rel=0)
print("Video available at https://youtube.com/watch?v=" + video.id)
display(video)
display(out1)
#@title
from IPython import display as IPyDisplay
IPyDisplay.HTML(
f"""
<div>
<a href= "https://github.com/DL4CV-NPTEL/Deep-Learning-For-Computer-Vision/blob/main/Slides/Week_4/DL4CV_Week04_Part05.pdf" target="_blank">
<img src="https://github.com/DL4CV-NPTEL/Deep-Learning-For-Computer-Vision/blob/main/Data/Slides_Logo.png?raw=1"
alt="button link to Airtable" style="width:200px"></a>
</div>""" )
Activation functions#
import torch
import numpy as np
import matplotlib.pyplot as plt
x_points = torch.linspace(-10,10,1000)
x_points.shape
torch.Size([1000])
activation = torch.nn.Sigmoid()
plt.plot(x_points,activation(x_points))
plt.title('Sigmoid Activation Function')
plt.grid()
activation = torch.nn.Tanh()
plt.plot(x_points,activation(x_points))
plt.title('Tanh Activation Function')
plt.grid()
activation = torch.nn.ReLU()
plt.plot(x_points,activation(x_points))
plt.title('ReLU Activation Function')
plt.grid()
activation = torch.nn.LeakyReLU(negative_slope=0.1)
plt.plot(x_points,activation(x_points))
plt.title('Leaky ReLU Activation Function')
plt.grid()
activation = torch.nn.ELU()
plt.plot(x_points,activation(x_points))
plt.title('Leaky ReLU Activation Function')
plt.grid()
activation = torch.nn.Threshold(5,-2)
plt.plot(x_points,activation(x_points))
plt.title('Threshold Activation Function')
plt.grid()
activation = torch.nn.LogSigmoid()
plt.plot(x_points,activation(x_points))
plt.title('LogSigmoid Activation Function')
plt.grid()
activation = torch.nn.Hardswish()
plt.plot(x_points,activation(x_points))
plt.title('Hard Swish Activation Function')
plt.grid()